
Background

Question
Does temporal normalization capture trade-offs in perception 
across time due to stimulus contrast and attention?

• Temporal context preceding or following stimuli (e.g., stimulus onset 
asynchronies1 or contrast2) and attention3 can lead to trade-offs in 
processing sequential stimuli

• Temporal normalization, the idea that neural responses are divisively 
suppressed by activity at other times4,5, offers a potential mechanism that 
could unify these findings

• Attention is known to interact with spatial normalization6, but it is currently 
unknown how it might interact with temporal normalization

Methods

Normalization model of dynamic attention1
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Simulation 1: Temporal normalization reproduces perceptual 
suppression of past and future stimuli

Temporal normalization affects the response to stimuli both forward and 
backward in time
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At short SOAs model responses are dependent on the gain to both stimuli, while at longer SOAs the 
responses become more independent of the non-target gain
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We simulated behavior in a two-target cueing paradigm3, where the task was to 
report the clockwise or counterclockwise tilt of a target stimulus

Simulation 1: Precues were always neutral, SOA was fixed at 250 ms, contrast of 
each stimulus varied independently (high = 64%, low = 32%)

Simulation 2: Precues and SOAs varied, contrast was fixed
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Temporal receptive fields extend 
excitatory and suppressive drives

low high
Target contrast

d’

low high

T1 T2
Non-target contrast

high
low

0.0

0.5

1.0

1.5

2.0

2.5

Behavioral data2

Model prediction

T2 contrast
high
low

250 ms

T1 T2

R
ed

uc
ed

 T
1

re
sp

on
se

T1 T2

R
ed

uc
ed

 T
1

re
sp

on
se

Reduced T2
response

Time

Simulation 2: Temporal normalization predicts attentional 
trade-offs without an explicit resource parameter

= “optimal” gain for maximizing expected response

Temporal normalization induces trade-offs between stimuli at 
short-to-medium SOAs
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Optimal gain under temporal normalization predicts attentional 
enhancement at early but not late SOAs

T1 T2

100 250 400 800 100 250 400 800
0.0

0.5

1.0

1.5

2.0

2.5

SOA (ms)

d'

Valid
Neutral
Invalid

Model prediction Behavioral data1

Gain multiplies the
excitatory drive

Optimal gain settings based on
model response aross trialsHow does gain affect responses

to each target stimulus?

Attentional trade-offs with
no explicit resource

A dynamic normalization model with temporal receptive fields captures perceptual and attentional 
trade-offs across time Angus F. Chapman, Michael L. Epstein, & Rachel N. Denison

Department of Psychological & Brain Sciences, Boston University
Denison Lab
Psychological & Brain Sciences

Conclusions
• Adding temporal windows to the Normalization Model of Dynamic Attention1 allowed for 

interactions between responses to sequential stimuli

• Varying the contrast of stimuli in the model resulted in suppression of target stimuli when 
non-target contrast was high, replicating previous behavioral findings2 

• Temporal normalization incentivizes trade-offs between stimuli across time without requiring 
an explicit attentional resource parameter

• Dynamic normalization models can capture a range of perceptual and attentional 
phenomenaFunding: BU Start-up funding to RND
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